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A resistive network has trivial circuit dynamics: all voltages and 
currents are linear functions of (that is, proportional to) input 
sources.

However, many applications need energy storing elements, such 
as capacitors and inductors, along with switching actions that has 
specific circuit dynamics to achieve useful functions. The study of 
circuit dynamics is also known as transient analysis.

10V

t=0 5 k

5 k

+

Vo(t)

–

Va

t0

Va(t)

10 V

t0

Vo(t)

10 V

Example 6-1: The output voltage of a resistor divider circuit 
follows the input voltage exactly.

6.1 Circuit Dynamics
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Applications of Circuit Dynamics

A security alarm circuitry makes use of circuit dynamics: when 
you enter your apartment, you have to key in the pass code 
within, say, 30 seconds; otherwise, the alarm may set off.

Another example: if an intruder of your apartment has triggered 
the sensor of the alarm system, the alarm may set off after 30 
seconds.

Very often, the timer consists of an RC (resistor + capacitor) 
circuit: an RC timer.

http://www.eyeonannapolis.net/wp-content/uploads/2009/08/burglar-alarm.jpg
http://images.google.com.hk/imgres?imgurl=http://www.uberreview.com/wp-content/uploads/2006/07/fire%20alarm%20clock.jpg&imgrefurl=http://www.uberreview.com/2006/07/fire-bell-alarm-clock.htm&usg=__UXy7BVfuwvkhBQHtZGEUwup82ok=&h=400&w=333&sz=22&hl=zh-TW&start=50&um=1&tbnid=-n2UtVfpHJUktM:&tbnh=124&tbnw=103&prev=/images?q=alarm+photo&ndsp=20&hl=zh-TW&client=firefox-a&rls=org.mozilla:en-US:official&sa=N&start=40&um=1
http://images.google.com.hk/imgres?imgurl=http://www.hku.hk/bse/bbse2001/burglar1.gif&imgrefurl=http://www.hku.hk/bse/bbse2001/bbse2001_0809-security.htm&usg=__Fbf4qpdsHIHiDntp-o0DKWo7xDk=&h=598&w=366&sz=11&hl=zh-TW&start=2&um=1&tbnid=6VuhMro0hCN3fM:&tbnh=135&tbnw=83&prev=/images?q=Burglar+Alarm&hl=zh-TW&client=firefox-a&rls=org.mozilla:en-US:official&sa=G&um=1
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Switches and Operations

A switch has two states: open and closed. For an ideal switch, 
when it is closed, the resistance is zero; and when it is open, the 
resistance is infinite.

switch
open

switch
closed

switch closed at t=0:
for t < 0, S1 open;
for t  0, S1 closed.

S1 S1 t=0 S1

switch open at t=0:
for t < 0, S1 closed;
for t  0, S1 open.

http://images.google.com.hk/imgres?imgurl=http://www.steinair.com/images/store/switch4.jpg&imgrefurl=http://www.steinair.com/switches.htm&usg=__682ikdPT_Ykae12OsQzIF1UNaf8=&h=579&w=301&sz=23&hl=zh-TW&start=6&um=1&tbnid=6-xiLMxywrGGAM:&tbnh=134&tbnw=70&prev=/images?q=switches&hl=zh-TW&client=firefox-a&rls=org.mozilla:en-US:official&hs=lfL&sa=G&um=1
http://images.google.com.hk/imgres?imgurl=http://i.ehow.com/images/GlobalPhoto/Articles/2187545/switches_Full.jpg&imgrefurl=http://www.ehow.com/how_2187545_up-any-v-device-car.html&usg=__kBuhqcen_BVb-ih_BYuIMLB-Ajg=&h=368&w=381&sz=23&hl=zh-TW&start=46&um=1&tbnid=J5flrD0RVWWrTM:&tbnh=119&tbnw=123&prev=/images?q=switches&ndsp=20&hl=zh-TW&client=firefox-a&rls=org.mozilla:en-US:official&hs=I20&sa=N&start=40&um=1
http://images.google.com.hk/imgres?imgurl=http://www.made-in-china.com/image/2f0j00mvwQICYBkUbAM/Dip-Switches-VDGS-04H-R-.jpg&imgrefurl=http://www.made-in-china.com/showroom/tonver/product-detailFqwQubaoLthZ/China-Dip-Switches-VDGS-04H-R-.html&usg=__l0ZtrF10lsVgWwDb3CatDj4vK7I=&h=360&w=450&sz=95&hl=zh-TW&start=5&um=1&tbnid=-ehZcn3oDJrQ6M:&tbnh=102&tbnw=127&prev=/images?q=dip+switches&hl=zh-TW&client=firefox-a&rls=org.mozilla:en-US:official&hs=NiL&sa=G&um=1
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6.2.1  Charging Capacitor with Current Source

Recall the time-domain relation of a capacitor: 

ci (t)
cdv (t)

C
dt

=

Now, consider a capacitor C being charged by a constant current 
source Is through a switch S:

+

vc(t)

–

CIs

t=0
cdv (t)

dt
sI

C
=

cv (t) = +s
c

I
t v (0)

C

The time response of vc(t) is as shown: vc(t)

t0

Is/C
vc(0)
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Example 6-2

Example 6-2: A current source of 1 mA is used to charge up a 
capacitor of 1 nF with vc(0)=0. How long does it take to 
charge the capacitor to 5 V if it is initially relaxed?

Soln.:

sI
cV

C
t


=



 t
c

s

C V

I


=

1nF 5V
5 s

1mA


= = 

+

vc(t)

–

1 nF1 mA

t=0
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6.2.2  Capacitors in Parallel and in Series

Consider driving N capacitors connected in parallel with a time 
varying voltage source vs(t):

C1vs(t) C2 CN
… Ceqvs(t)

i1(t) iN(t)i2(t)

eqi (t) 1 2 Ni (t) i (t) ... i (t)= + + +

s
1 2 N

dv (t)
(C C ... C )

dt
= + + +

Hence, for capacitors connected in parallel:

Ceq = C1 + C2 + … CN

ieq(t) ieq(t)

eqi (t) s
eq

dv (t)
C

dt
=

eqi (t)



𝑖 𝑡 = 𝐶
𝑑𝑣 𝑡

𝑑𝑡

∴
𝑖𝑐 𝑡

𝐶𝑒𝑞
=
𝑖𝑐 𝑡

𝐶1
+
𝑖𝑐 𝑡

𝐶2

1

𝐶𝑒𝑞
=

1

𝐶1
+

1

𝐶2
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Capacitors in Series

Consider driving two capacitors connected in series with a time 
varying voltage source vs(t):Type equation here.

C1

vs(t)
C2

+
vc1(t)

–
+

vc2(t)
–

Ceqvs(t)

+

vc1(t)+vc2(t)

–



ic(t) ic(t)

𝑣𝑠 𝑡 = 𝑣𝑐1 𝑡 + 𝑣𝑐2 𝑡

𝑑𝑣𝑠 𝑡

𝑑𝑡
=
𝑑𝑣𝑐1 𝑡

𝑑𝑡
+
𝑑𝑣𝑐2 𝑡

𝑑𝑡
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Capacitors in Series (cont.)

For two capacitors connected in series, we therefore have

eq

1

C
1 2

1 2 1 2

1 1 C C

C C C C

+
= + =

eqC 1 2C || C=

Note that a||b is only a symbol that represents the computation of 

a|| b
ab

a b
=

+

In general, for N capacitors connected in series, we have

Ceq = C1 || C2 || … || CN

eq

1

C 1 2 N

1 1 1
...

C C C
= + + +
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Example 6-3

Example 6-3: Compute the equivalent capacitance Ceq of the 
following capacitor network.

10 F

3 F2 F

10 F

15 F
Ceq

Soln.:

Ceq = 10||(2+3) + 10||15

10 5 10 15

10 5 10 15

     
= +

 +   + 

3.33 6=  + 

9.33 F= 
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6.2.3  Charging Capacitor with Voltage Source

Charging a capacitor C (initially relaxed, or vc(0)=0) with a 
constant voltage source Vs is not as straightforward. As the 
voltage source forces the voltage across itself to be Vs, the 
capacitor is charged to Vs instantaneously:

+

vc(t)

–

C

t=0

Vs

vc(t)

t0

Vs

t=0–

t=0+

Vo(0
–) = 0

Vo(0
+) = Vs

where t=0– is the time instant just right before switching, and 
t=0+ is the time instant just right after switching, with the time 
elapsed being t = 0+ – 0– = 0.

ic(t)
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6.2.4  Continuity of Capacitor Voltage

The capacitor current Ic at the previous charging process is thus  

cI c c c sQ C V C(v (0 ) v (0 )) CV

t t 0 0

+ −  −
= = = = = 
 

Mathematically Ic is a delta function (ic(t) = (t), not discussed in 
this course); but practically it cannot be achieved. Hence, if the 
capacitor current ic(t) remains finite, the capacitor voltage vc(t) 
cannot have jumps in voltage. We called this condition the 
continuity of the capacitor voltage: no jumps in capacitor voltage, 
i.e. vc(0

+) = vc(0
–).

Another way to prove the continuity of the capacitor voltage is by 
the energy method. The energy stored in a capacitor is

E = ½CV2

A sudden jump in voltage will lead to a sudden jump in energy, 
which implies infinite power. This is physically impossible.
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Charging Capacitor with Vs through R

In reality, a voltage source will have a non-zero source resistance, 
and the switch will have a non-zero switch resistance when 
closed. The two resistors are in series, and can be modeled as a 
single resistor R.

+

vc(t)

–

CVs

ic(t) R

Consider the general case that the capacitor C has an initial 
voltage of vc(0) (not necessarily zero). At t=0, the switch S is 
closed, and the capacitor current ic(t) is given by

s c c
c

V v (t) dv (t)
i (t) C

R dt

−
= =
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6.2.5  First Order Differential Equation

c c sdv (t) v (t) V

dt
+ =

 

( )t /

c t /s
d v (t)e V

e
dt



=


Rearranging the terms and assign the time constant =RC, we 
arrive at the first order ordinary differential equation (ODE):

Solving the above equation requires multiplying both sides with 
the integration factor et/:



t / t / t /c c sdv (t) v (t) V
e e e

dt

  + =
 

( ) "dte
V

e)'t(vd "t
t

0

S

e)t(v

)0(v

't
c

t
c

c




+



+ 
=
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In words, the solution is

transient = final + (initial – final) e−t/

c sv ( ) V =

Solution to First Order ODE

The (general) solution to the first order ODE is

which can be rearranged to read

We next observe that 

and the solution is more conveniently written as 

−+ −+= t
scs e)V)0(v(V

−+ −+= t
cccc e))(v)0(v(()(v)t(v

−−+ −+= t
SS

t
cc eVVe)0(v)t(v

S
t

Sc
t

c VeV)0(ve)t(v −=− +
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First formula from previous page

transient = final + (initial – final) e−t/

Rearranging terms
transient = final – (final – initial) e−t/

= final (1 – e−t/) + initial  e−t/

= initial + final (1 – e−t/) – initial + initial  e−t/

Second formula

transient = initial + (final – initial)(1 – e−t/)

These two formulas are equivalent. Feel free to use the one that is 
more convenient for the particular transient problem.

Two Equivalent Formulas For Transients 
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Exponential Decay and Complementary Exponential

Consider the functions involving exponentials with a negative 
index, that is, with x>0, we consider

y = e–x exponential decay

and y = 1 – e–x complementary exponential

x y = e–x y = 1–e–x

0 1.000 0.000
0.693 0.500 0.500
1 0.368 0.632
2 0.135 0.865
2.3 0.100 0.900
3 0.050 0.950
4 0.018 0.982
4.6 0.010 0.990
5 0.007 0.993
6 0.002 0.998
6.9 0.001 0.999

0.8

43210

1.0

0.6

0.4

0.2

y

x

e–x

1–e–x

5
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Time Constant vs Half Life

In sketching the exponential decay curve (or complementary 
exponential curve), three parameters should be indicated:

Initial value
Final value
Time constant

The time constant  is a circuit parameter. Readers may learn that 
radioactive decay also obeys the exponential decay curve, but it is 
specified by the parameter half life T½, the time for the original 
mass of radioactive component to reduce by one-half.

From p. 6-17, the original value 1 is reduced to ½ at x=0.693, 
and this is translated to 0.693  0.7 in p. 6-16. Hence, roughly 
speaking,

T½ = 0.7.
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Example 6-4: RC Circuit Transient

Example 6-4: The capacitor C was initially charged to 5 V. Sketch 
the capacitor voltage vo(t) when it is discharged through the 
resistor R for t  0.

+

vo(t)

–

C

R

1 F

1 k

Soln.:
Initial value = vo(0

+) = 5 V
Final value = vo(∞) = 0 V
Time constant =  = RC

= 1 k1 F = 1 ms

The sketch is a curve of 
exponential decay.

4 V

4 ms3 ms2 ms1 ms0

5 V

3 V

2 V

1 V

vo(t)=5e–t/1m

t
5 ms

vo(t)
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t=0

Example 6-5: RC Circuit Transient

Example 6-5:

S
+

vo(t)

–

C

10 V

R

Vs
1 F

1 k

Soln.:

(a) Initial value = vo(0
+) = 0 V

Final value = vo(∞) = Vs = 10 V
Time constant =  = RC = 1 k1 F = 1 ms

(a) Sketch the output voltage vo(t) of the RC circuit shown 
below, assuming the capacitor is initially relaxed.

(b) How long does it take for the output voltage vo(t) to reach 
99% of the final value?

(c) Sketch vo(t) if vo(0
–) = 4 V. 



6-22





Example 6-5: RC Circuit Transient (cont.)

8 V

4 ms3 ms2 ms1 ms0

10 V

6 V

4 V

2 V

vo(t)=10+(0–10)e–t/1m

t

(b) For vo(t) to reach 0.99 of the 
final value, we have

vo(t) = Vs(1 – e–t/)
 0.99Vs = Vs(1 – e–t/)
 t = –ln(0.01)

= 1 ms4.6
= 4.6 ms

(c) Initial value = vo(0
+) = 4 V

Final value = Vs = 10 V
Time constant =  = 1 ms 8 V

4 ms3 ms2 ms1 ms0

10 V

6 V

4 V

2 V

vo(t)=10+(4–10)e–t/1m

t

=10–6e–t/1m

vo(t)

vo(t)

=10(1–e–t/1m)

=4+6(1–e–t/1m)

(10-4)63.2%
= 3.792 V

(a)
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6.2.6  Capacitor as Open Circuit in Steady State

For the RC circuit, let us consider the capacitor current ic(t):

+

vo(t)

–

C

R

Vs C

R

Vs

1F

1k

+

Vs

–

ci (t)
cdv (t)

C
dt

=

c si =V /R

sV

R
=

In the initial state (t=0+), with 
continuity of the capacitor 
voltage vc(0

+)=vc(0
–)=0:

In the final state (t=∞), the 
capacitor behaves as an 
open circuit (for ic()=0):

ci ( ) 0=

ci =0t=0 t=∞

dt

])e))(v)0(v()(v([d
C

t
ccc

−+ −+
=

)0(ic
+

−
+−

= tcc e
R

)0(v)(v −= tS e
R

V
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Energy Balance in RC Circuit

C

R

Vs
1 F

1 k

+

Vs

–

S1

t=0

Example 6-6: By fully charging the capacitor C to Vs:
(a) What is the energy stored in C?
(b) What is the energy delivered by Vs?
(c) What is the energy consumed (dissipated) by R?

10 V

Soln.:
(a) The energy stored in C is

CE

21
1 10 50 J

2
=    = 

(b) The energy delivered by Vs is

SE ( )s s
0

V i (t) dt


=  −

t /CRs
s

0

V
V e dt

R


− 

=   
 

(–ve sign to indicate delivering out)
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Energy Balance in RC Circuit (cont.)

SE 2 t /CR

s 0
CV e


− = − 

2

sCV=

21 10 100 J=  = 

(c) The energy dissipated by R is

RE ( )2

c
0

i (t) R dt


= 

2
2t /CRs

2
0

V
e R dt

R


− 

=   
 

2 2t /CR

s 0

1
CV e

2


− = − 

50 J= 

It is important to note that:

ES = EC + ER

Hence, energy is balanced in the charging process of the RC circuit. 
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t=0

Capacitor Current can be Discontinuous

Although capacitor voltage is continuous, capacitor current can be 
discontinuous, as shown in the following example.

Example 6-7: Sketch the output voltage and the output current 
waveform if vc(0) = 4 V.

+

vc(t)

–

C

10 V

R

Vs

3.3 F

300 

Soln.:
vc(0

+) = 4 V (given)
vc(∞) = 10 V
 = 3003.3 = 0.99 ms  1 ms
vc(t)=10+(4–10)e–t/

=4+6(1–e–t/)
1 m 2 m 3 m 4 m0

2 V

t


6 V

8 V

vc(t)=4+6(1–e–t/)

10 V

cv (0 )+cv (0 )−

ic(t)
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Capacitor Current can be Discontinuous (cont.)

Soln.:
ic(0

+) = (10–4)/300 = 20 mA
ic(∞) = 0 A

1 m 2 m 3 m 4 m

1 m 2 m 3 m 4 m0

0

2 V


ic(t)=20me–t/

t



20 mA

10 mA

6 V

8 V

vc(t)=4+6(1–e–t/)

t

10 V

ci (0 )−

cv (0 )+cv (0 )−

ci (0 )+

R

)t(vV
)t(i cs

c

−
=

S

t=0

+

vc(t)

–

C

10 V

R

Vs

3.3 F

300  ic(t)

300

)]e1(64[10 t −−+−
=

−
−

=


= t
t

em20
300

e6

Alternatively, ic(t) = ic(∞)+ (ic(0
+)–ic(∞))e–t/ = 20me–t/
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A camera flash lamp makes use of pulsed capacitive discharge.

Application: Flash Lamp Discharge 

Simplified circuit:

C

R

Vs
flash lamp
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Example 6-8

Example 6-8: Simplified scheme of charge and discharge of flash 
lamp: close S1 to charge; (open S1 and close S2) to discharge.

S1

100 F15 V 3 

S2

3 k

ic(t)

vc(t)

Charging scenario (consider t=0 when S1 is closed):

Initial value: vc(0
+) = 0 V ic(0

+) = (15–0)/3k) = 5 mA
Final value: vc() = 15 V ic() = 0 mA
Time constant: R1C = 1 = 3k100 = 300 ms

R1

R2

cv (t) t /300m15(1 e )−= −

ci (t)
t /300m5m e−= 
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Example 6-8 (cont.)

Discharging scenario: (consider 
t=0 when S2 is closed):

vc(0
+) = 15 V ic(0

+) = –15/3 = –5 A
vc() = 0 V ic() = 0 mA
R2C = 2 = 3100 = 300 s

cv (t) t /30015e− =

ci (t)
t /3005 e− = − 

The charging current is 5 mA with 
a slow time constant of 0.3 s; 
while the discharging current is 
much larger at 5 A and the time 
constant is much shorter at 300 
s.

1

1

15 V

0.5 1.0
t

5 mA

0.5 1.0
t

0

0

–5 A

ic(t)

vc(t)
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Application: Speed of Computer

The heart of a computer is the CPU (central processing unit) that 
consists of millions of logic gates. The speed of a computer is 
determined by the propagation delays of logic gates (modeled as 
RC circuits) that restrict the maximum switching frequency.

Example 6-9: Given a logic inverter of a CPU that is modeled as 
an RC circuit with R=5 k and C=20 fF driven by a 1-V square 
wave, determine the maximum switching frequency fs if we 
require the output swing to be better than 0.01 V and 0.99 V.

Soln.: 

Vin

Vdd=1 V

Vo 1 V 
square 
wave

20 fF

5 k

vo(t)

R

C

1 V 
0 V

1 V 
0 V
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Example 6-9 (cont.)

For Vdd=1 V, the output voltage of the inverter swings between 0 V 
and 1 V. From previous discussion we learn that if we allow a 
duration of 5 (5RC), then the capacitor (output) voltage can settle 
to within 1% of the final values.  

Now,

5
= 0.1ns

This 0.5 ns is half of the 
switching period. Therefore,

T =   =2 5 1ns

and

sf = =1 / T 1GHz

= 0.5ns

1 V

1.5 ns1 ns0.5 ns0
t

 RC 5k 20f= = 

T
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S1

Example 6-10: RC Circuit Transient

+

vo(t)

–

C

10 V

Rt=0

Vs

1 F

1 k

Example 6-10: Sketch the output voltage vo(t) from t=0 to t=4 ms.

t=1.65 ms

S2 t=1.65 ms

Soln.: For 0 < t < 1.65 ms

CVs

R

For t > 1.65 ms

C

R

S1

S2 4 ms3 ms2 ms1 ms0
t

8 V

10 V

6 V

4 V

2 V

5 ms





charging towards 10 V

vo(1.65m)=10(1–e–1.65m/1m)V=8.08 V

vo(t)=8.08e–(t–1.65m)/1m

vo(4m)=8.08e–(4m–1.65m)/1m=0.77 V  

vo(t)=10(1–e–t/1m)
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Example 6-11

Example 6-11: The capacitor is not connected to ground in this 
example. Find expressions for and sketch va(t), vb(t) and i(t) 
before and after the switch is closed.

12 V 2 k

3 k va(t)

6 k

3 k
200 µF

i(t)

vb(t)

12 V 2 k

3 k va(0
–)

6 k

3 k

i(0–)

vb(0
–)

S1

va(0
–) = 6 V

vb(0
–) = 0 V

i(0–) = 1 mA

Consider t=0 when S1 is closed. The problem is advanced 
enough that we need to break it down into 3 stages for 
analysis.

(i) Before the switch is closed, the capacitor behaves as an 
open circuit.



Example 6-11 (cont.)

12 V 2 k

3 k va(0
+)

6 k

3 k

i(0+)

vb(0
+)

Therefore va(0
+) = 3 V

vb(0
+) = –3 V

i(0+) = va(0
+) /6 k= 0.5 mA

(ii) t=0+ scenario: the capacitor voltage can’t change instantly. 
Therefore va(0

+) − vb(0
+) = 6 V and the capacitor momentarily 

behaves as a 6-V battery as shown in below.

6 V

2 k

3 k

6 k

i(0+)

6 V

Voc = 0 V
Req = 0 

2 k2 k

6 V

i'  i

va(0
+) vb(0

+) va(0
+) vb(0

+)
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Example 6-11 (cont.)

(iii) From t=0+ on: the capacitor is fully discharged through 
a 4 k equivalent resistance.

2 k

3 k va(t)

6 k

i(t)

vb(t)

2 k

va(t)

2 k

vb(t)

Initial value: va(0
+) = 3 V vb(0

+) = –3 V i(0+) = 0.5 mA
Final value: va() = 0 V vb() = 0 V i() = 0 mA
Time constant:  = 4k200 = 800 ms

Therefore

𝑣𝑎(𝑡) = 3𝑒−𝑡/800𝑚

𝑣𝑏(𝑡) = −3𝑒−𝑡/800𝑚

𝑖(𝑡) = 0.5𝑚𝑒−𝑡/800𝑚

200 µF200 µF

i'  i
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When the switch is closed, both va(t) and vb(t) jerk down by 3 V 
while the voltage across the capacitor stays momentarily 
constant. Notice that part of the circuit can acquire a transient 
voltage that exceeds the supply voltages, i.e., above Vs or below 
ground.

0

6 V
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Example 6-11 (cont.)

3 V

t

1 mA

t

0

i(t)

v

We now have all we need to sketch va(t), vb(t) and i(t).

−3 V

va(t)

vb(t)

0.5 mA
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6.3.1  Charging Inductor with Voltage Source

Recall the time-domain relation of an inductor: 

v (t) =
di (t)

L
dt

Now, consider an initially relaxed inductor L (iℓ(0)=0) being 
charged by a constant voltage source Vs through a switch S:

S
+

vℓ(t)

–

LVs

t=0
di (t)

dt
= sV

L

i (t) = sV
t

L

The time response of io(t) is as shown: iℓ(t)

t0

Vs/L
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Arc Discharge due to Discontinuous Inductor Current

After charging the inductor to iℓ(t1
–)  0, the switch is turned off 

abruptly at t=t1. What will happen next?

S
+

vℓ(t)

–

LVs

t=t1
Clearly, at t=t1

–, iℓ(t1
–)  0. However, 

by switching off S, an open circuit 
exists between Vs and L, and

iℓ(t1
+) = 0.

Then

1v (t )

+ −

+ −

−
= = −

−
1 1

1 1

i (t ) i (t )
L

t t

This large inductor voltage applied across the switch causes 
breakdown of the air (if the electric field strength is larger than 
3V/m), and spark occurs. This is known as arc discharge and in 
general should be avoided. 
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6.3.2  Continuity of Inductor Current

From the inductor equation:

v (t) =
di (t)

L
dt

we learn that any jump in inductor current (iℓ0, but t=0) will 
induce an infinite inductor voltage. Hence, for inductor voltage to 
remain finite, there can be no jump in inductor current: this is 
known as the continuity of inductor current, i.e. iℓ(0

+) = iℓ(0
–).

Another way to prove the continuity of the inductor current is by 
the energy method. The energy stored in an inductor is

E = ½LI2

A sudden jump in current will lead to a sudden jump in energy, 
which implies infinite power. This is physically impossible.

N.B.
For C, V has to be continuous but I can jump
For L, I has to be continuous but V can jump



𝑖𝑒𝑞 𝑡 = 𝑖1 𝑡 + 𝑖2 𝑡 + ⋯+ 𝑖𝑁 𝑡

𝑑𝑖𝑒𝑞 𝑡

𝑑𝑡
=
𝑑𝑖1 𝑡

𝑑𝑡
+
𝑑𝑖2 𝑡

𝑑𝑡
+ ⋯+

𝑑𝑖𝑁 𝑡

𝑑𝑡

𝑣𝑠
𝐿𝑒𝑞

=
𝑣𝑠
𝐿1

+
𝑣𝑠
𝐿2

+⋯+
𝑣𝑠
𝐿𝑁

1

𝐿𝑒𝑞
=

1

𝐿1
+

1

𝐿2
+⋯+

1

𝐿𝑁

Hence, for inductors connected in parallel:

Leq = L1 || L2 || … || LN
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6.3.3 Inductors in Parallel and in Series

Consider driving N inductors connected in parallel with a time 
varying voltage source vs(t):

L1vs(t) L2 LN
… Leqvs(t)

i1(t) iN(t)i2(t)

ieq(t) ieq(t)
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Inductors in Series

Consider driving two inductors connected in series with a time 
varying current source is(t):

L1

is(t)
L2

+
vℓ1(t)

–
+

vℓ2(t)
–

Leqis(t)

+

vℓ1(t)+vℓ2(t)

–

+ = + =s s
1 2 1 2 eq

di (t) di (t)
v (t) v (t) (L L ) L

dt dt


eqL = +1 2L L

In general, for inductors connected in series:

Leq = L1 + L2 + … + LN
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6.3.4  Charging Inductor with Is through R

+

vℓ(t)

–

L

iR
t=0

Consider the charging of the RL circuit through a current source 
Is. Note that we cannot switch open a current source, and hence, 
a second switch S2 is added in parallel with Is, and stays closed 
until S1 is closed.

S2 R

S1

t=0

At t=0, S1 is closed (and S2 is opened). By KCL, we have

𝑣𝑙 𝑡 = 𝐿
𝑑𝑖𝑙(𝑡)

𝑑𝑡
= 𝑖𝑅 𝑡 𝑅 = 𝐼𝑆 − 𝑖𝑙(𝑡) 𝑅

𝑑𝑖𝑙(𝑡)

𝑑𝑡
+
𝑖𝑙(𝑡)

𝐿/𝑅
=

𝐼𝑆
𝐿/𝑅

𝑑𝑖𝑙(𝑡)

𝑑𝑡
+
𝑖𝑙(𝑡)

𝜏
=
𝐼𝑆
𝜏

𝑤𝑖𝑡ℎ 𝜏 =
𝐿

𝑅

Is

iℓ




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6.3.5  Inductor as Short Circuit in Steady State

The RL equation has the same form as the RC equation. With the 
inductor initially relaxed (iℓ(0

+)=0), and noting that iℓ(∞)=Is, we 
have

− = − t /

si (t) I (1 e )

The inductor voltage is given by

− = =  t /

s

di (t)
v (t) L I R e

dt

In the initial state (t=0+), with 
continuity of the inductor current 
iℓ(0

+)=iℓ(0
–)=0.

In the final state (t=∞), the 
inductor behaves as a short 
circuit (for vℓ(∞)=0).

Note that the inductor voltage 
can be discontinuous.

0
t

4320

Is

t

432

iℓ(t)

vℓ(t)

IsR
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Applications of RL circuits

In many applications, such as fluorescent lamps and neon lamps, 
a very high voltage is needed for start up. We may make use of 
the continuity of inductor current to generate a high voltage for 
this purpose.

Ballast

http://en.wikipedia.org/wiki/File:NeTube.jpg
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t=0

Example 6-12 

Example 6-12: Discuss the switching action of the following circuit 
that generates a high voltage of over 300 V from a low 
voltage source to ignite a neon lamp.

2 H

neon 
lamp

Vs

8 V

100 R2 4 k

+

vo(t)

–

– vR2(t)  +

Soln.:
Prior to switching, the circuit is in the steady state, with L being a 
short circuit (vℓ(0

–)=0), and

s

1

V
i (0 ) 80mA

R

− = =

Note that the neon lamp remains an open circuit before it is ignited. 

R1

L
iℓ(t)
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Right after switching, the inductor current cannot change 
instantaneously, and iℓ(0

+)=80 mA flows through R2, and 

Example 6-12 (cont.) 

2Rv (0 )+ 80m 4k 320V= −  = −

 ov (0 )+
2R sv (0 ) V 312V+= + = −

This 312 V is high enough to ignite the 
neon lamp. The time constant is 
=L/(R1+R2) = 0.488 ms. Eventually, 
as t→, the inductor becomes a short 
circuit again, and

s

1 2

V
2mA

R R
= 

+
i ( )

Hence,

0
t

2 s1.5 s1 s0.5 s

iℓ(t)

80 mA

2 mA

t
2 s1.5 s1 s0.5 s

vo(t)

8 V

–100 V

–200 V

0

–300 V

m4888.0te)m2m80(m2)t(i −−+=

m4888.0tem78m2 −+=





il(t)



Example 6-13

L
50 H

S1

t=0

Is

1 mA

iℓ
R1 

1 k

Soln.:
Prior to switching,

v1(0
–) = IsR1 = 1 V

iℓ(0
–) = 0 A (and v2(0

–) = 0 V)

At the instant of switching, with continuity of the inductor current,
and iℓ(0

+) = iℓ(0
–)  = 0 A

v1(0
+) = Is(R1||R2) = 1m500 = 0.5 V

R2

1 k

R3

1 k

Example 6-13: Find and sketch v1(t) and iℓ(t) for the circuit below.

v1(t) v2(t)

For more complicated RC and RL circuits, the time constant is 
given by =ReqC or L/Req, where Req is the equivalent resistance 
as seen by the capacitor or inductor.
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At t→∞, L behaves as a short circuit, and

iℓ(∞) = Is(R1||R2)/((R1||R2)+R3)
= 1m0.5k/1.5k
= 0.333 mA

v1(∞) = Is(R1||R2||R3)
= 1m333
= 0.333 V

Example 6-13 (cont.)

Use equivalent resistance to 
compute the time constant:

 = L/((R1||R2)+R3)
= 33.3 ns

Is R1 R2

Is(R1||R2)

R1||R2

50n 100n150n
t/s

1 V

0.33 V
0.5 V

0

50n 100n150n
t/s

0.33 mA

0.5 mA

0

v1(t)

iℓ(t)



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Example 6-14

Example 6-14: For the circuit in below, find the expressions for 
and sketch v(t) and i(t) before and after the switch is opened.

12 V 2 

2 

2 

2 H

i(t)

v(t)

S1

v(0–) = 4 V
i(0–) = 4 A
iL(0

–) = 2 A

(i) Before the switch is opened, the inductor behaves as a short 
circuit.

12 V 2 

2 

2 

i(0–)

v(0–)

iL(t)

iL(0
–)



i()

Example 6-14 (cont.)

(ii) t=0+ scenario: the inductor current can’t change instantly. 
Therefore iL(0

+) =  2 A and the inductor momentarily behaves 
as a 2-A current source as shown in below.

v(0+) = 8 V
i(0+) = 2 A
iL(0

+) = 2 A12 V 2 

2 

2 

i(0+)

v(0+)

iL(0
+)

2 A

(iii) At t→∞: the inductor behaves as a short circuit again.

v() = 6 V
i() = 3 A
iL() = 3 A12 V 2 

2 

2 

v()

iL()
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8 V
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Example 6-14 (cont.)

4 V

t
0

v(t)

6 V

4 A

2 A

t
0

i(t)

3 A

After the switch is opened, the equivalent resistance seen by 
the inductor is 2  + 2 .

Time constant:  = 2 H/4 = 0.5 s

Therefore

𝑣 𝑡 = 6 + 2𝑒−𝑡/0.5

𝑖 𝑡 = 3 − 𝑒−𝑡/0.5



Capacitor connected to a series resistor excited by a voltage 
source, i.e., the Thevenin’s equivalent circuit.

Transfer functions:

𝐼𝑐(𝑠)

𝑉𝑠(𝑠)
=
𝑉𝑠(𝑠)/(𝑅 +

1
𝑠𝐶
)

𝑉𝑠(𝑠)

=
1

𝑅 +
1
𝑠𝐶

=
𝑠𝐶

1 + 𝑠𝑅𝐶
=

𝑠𝐶

1 + 𝑠𝜏

𝑉𝑐(𝑠)

𝑉𝑠(𝑠)
=
𝐼𝑐(𝑠)/(𝑠𝐶)

𝑉𝑠 (𝑠)
=

1

1 + 𝑠𝜏

The numerator and denominator polynomials in s in the transfer 
function are of first degree at most. Hence first order system.

The transient analysis can also be solved by Laplace Transform 
techniques (not taught in this class).
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Transfer Function Approach (RC Circuit)

C

R

Vs

+

Vc

–

S1

t=0 Ic

(𝜏 = 𝑅𝐶)
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Transfer Function Approach (RL Circuit)

Inductor connected to a parallel resistor excited by a current 
source, i.e., the Norton’s equivalent circuit.

Transfer functions:

𝑉𝑙(𝑠)

𝐼𝑠(𝑠)
=
𝐼𝑠(𝑠)(𝑅 ∥ 𝑠𝐿)

𝐼𝑠(𝑠)

=
𝑠𝑅𝐿

𝑅 + 𝑠𝐿
=

𝑠𝐿

1 + 𝑠
𝐿
𝑅

=
𝑠𝐿

1 + 𝑠𝜏

𝐼𝑙(𝑠)

𝐼𝑠(𝑠)
=
𝑉𝑙(𝑠)/(𝑠𝐿)

𝐼𝑠 (𝑠)
=

1

1 + 𝑠𝜏

The equations are in the same form as the RC circuit.

(𝜏 =
𝐿

𝑅
)

+

Vl

–

L
t=0

S2 R

S1

t=0

Is

Il



6-55

LC Resonator
(A Second Order System)

+

vo(t)

–

Assume the capacitor C is initially charged to vc(0
–) = Va. At t=0, 

it is connected in parallel to an inductor L that is initially relaxed 
(iℓ(0

–) = 0). Discuss the subsequent action.

S1

t=0

C L

ic(t)

When S1 is closed, vc(t) = vℓ(t) = vo(t), and ic(t) = –iℓ(t). Now,

odi (t) d dv (t)
L L C

dt dt dt

 
= = − 

 
ov (t)


2

o
o2

d v (t) 1
v (t) 0

dt LC
+ =

iℓ(t)
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90o

LC Resonator (cont.)

Define o
2 = 1/(LC), and the equation of a simple harmonic 

oscillator is obtained:

2
2o

o o2

d v (t)
v (t) 0

dt
+  = o

1

LC
 =

The general solution (by inspection) is

ov (t) o oacos( t) bsin( t)=  + 

By matching the initial conditions, we have

ov (t) a oV cos( t)= 

i (t) o
a o

dv (t)
C CV sin( t)

dt
= − =  

The electrical energy stored in the capacitor is gradually 
converted to the magnetic energy of the inductor, then back and 
forth forever. The circuit keeps oscillating at the resonance 
frequency o and is thus known as an LC resonator.

vo(t)

iℓ(t)

0

0
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RLC Circuits
(A Second Order System)

The flash lamp discharge circuit can be modeled more accurately 
as an RLC circuit. The series RLC circuit is shown below.

+

v(t)

–

C L

i(t)

By KVL, 

v(t)
di(t)

i(t)R L
dt

= +

2

2

dv(t) d v(t)
C R LC

dt dt
= − −



2

2

d v(t) R dv(t) 1
v(t) 0

dt L dt LC
+ + =
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RLC Circuit (cont.)

The second order ODE can be more conveniently written in terms 
of the resonance frequency o and the damping ratio :

2
2

o o2

d v(t) dv(t)
2 v(t) 0

dt dt
+  +  = o

1

LC
 = R C

2 L
 =

The general shapes of damped harmonic oscillation are shown below:

 = 0.4

http://en.wikipedia.org/wiki/File:RLC_transient_plot.svg

